metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Hexa- μ -chlorido-hexachlorido(η^6 -hexamethylbenzene)trialuminium(III)lanthanum(III) benzene solvate

Alexander S. Filatov, Sarah N. Gifford, D. Krishna Kumar and Marina A. Petrukhina*

Department of Chemistry, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA Correspondence e-mail: marina@albany.edu

Received 2 February 2009; accepted 10 February 2009

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.025; wR factor = 0.063; data-to-parameter ratio = 22.5.

In the title compound, $[Al_3LaCl_{12}(C_{12}H_{18})] \cdot C_6H_6$, all molecules are located on a mirror plane. Three chloridoaluminate groups and a hexamethylbenzene molecule are bound to the central lanthanum(III) ion, forming a distorted pentagonal bipyramid with the η^{6} -coordinated arene located at the apical position. The hexamethylbenzene ligand disordered between two orientations in a 1:1 ratio is also involved in parallelslipped $\pi - \pi$ stacking intermolecular interactions with a benzene solvent molecule [centroid-centroid distance 3.612 (4) Å].

Related literature

For the previously characterized lanthanum chloroaluminate and chlorogallate complexes, see: Filatov et al. (2008). For a recent review of other lanthanide chloroaluminate complexes, see: Bochkarev (2002). For complexes of lanthanide chlorogallates with polycyclic aromatic systems, see: Gorlov et al. (2008).

Experimental

Crystal data	
$[Al_3LaCl_{12}(C_{12}H_{18})] \cdot C_6H_6$	V = 3404.9 (3) Å ³
$M_r = 885.62$	Z = 4
Orthorhombic, Pnma	Mo- $K\alpha$ radiation
a = 12.2127 (6) Å	$\mu = 2.28 \text{ mm}^{-1}$
b = 16.4205 (8) Å	T = 173 K
c = 16.9790 (8) Å	$0.22 \times 0.20 \times 0.16 \text{ mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2003) $T_{\min} = 0.613, \ T_{\max} = 0.697$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.063$ S = 1.054250 reflections

28535 measured reflections 4250 independent reflections 3911 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.018$

189 parameters H-atom parameters not refined $\Delta \rho_{\rm max} = 0.89 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.99 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

La1-C1	2.945 (3)	La1-Cl4	2.9298 (6)
La1-C2	2.965 (2)	La1-Cl5	2.9083 (7)
La1-C3	2.957 (3)	La1-Cl6	2.9097 (7)
La1-C4	2.941 (4)	La1-Cg1	2.613 (3)
La1-Cl3	2.9128 (5)	-	

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2009).

We thank the National Science Foundation for financial support (CHE-0546945). We are also very grateful to the University at Albany for supporting the X-ray center at the Department of Chemistry.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2516).

References

Bochkarev, M. N. (2002). Chem. Rev. 102, 2089–2117.
Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Filatov, A. S., Rogachev, A. Yu. & Petrukhina, M. A. (2008). J. Mol. Struct. 890, 116-122.

Gorlov, M., Hussami, L. L., Fischer, A. & Kloo, L. (2008). Eur. J. Inorg. Chem. pp. 5191–5195.

Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122. Westrip, S. P. (2009). *publCIF*. In preparation.

Acta Cryst. (2009). E65, m286-m287 [doi:10.1107/S1600536809004899]

$Hexa-\mu-chlorido-hexachlorido(\eta^6-hexamethylbenzene)trialuminium(III)lanthanum(III) benzene solvate$

A. S. Filatov, S. N. Gifford, D. K. Kumar and M. A. Petrukhina

Comment

We have recently reported X-ray structural characterization of the first two lanthanum(III) chloroaluminate complexes with neutral arenes, $[La(\eta^6-C_6H_5Me)(AlCl_4)_3]$ and $[La(\eta^6-C_6Me_6)(AlCl_4)_3]$, as well as of the first lanthanum(III) chlorogallate complex, $[La(\eta^6-C_6Me_6)(GaCl_4)_3]$ (Filatov *et al.*, 2008). The $[La(\eta^6-C_6Me_6)(AlCl_4)_3] \cdot 0.5C_6H_6$ complex crystallizes in the monoclinic $P2_1/c$ space group with the β angle being close to 90° (β = 90.27°). We later found that under slightly different experimental conditions, namely at a higher temperature (285 *versus* 273 K), the lanthanum complex with hexamethylben-zene, $[La(\eta^6-C_6Me_6)(AlCl_4)_3] \cdot C_6H_6$ (I), is crystallized.

The molecular structure of (I) is comprised of the three chloroaluminate groups and a hexamethylbenzene molecule bound to the central lanthanum(III) ion (Fig.1). The coordination polyhedron is a distorted pentagonal bipyramid with the η^6 -arene located at the apical position. The La–C bond distances span from 2.941 (4) to 2.965 (2) Å with a La–centroid distance being 2.613 (3) Å. These distances are comparable to those found in the previously reported complex [La(η^6 -C₆Me₆)(AlCl₄)₃]·0.5C₆H₆ (II) [La–C 2.927 (7)–3.035 (7)Å; La–centroid 2.633 (7)Å].

In (I), coordinated hexamethylbenzene is engaged into π - π stacking interactions with a solvent benzene molecule. The intercentroid distance between their 6-membered rings is 3.612 (4) Å. The two ring planes are not parallel and the dihedral angle is 12.7° (Fig.2). In the above hemisolvate (II), on the contrary, both benzene faces are involved in π - π stacking interactions as benzene is sandwiched between two hexamethylbenzene molecules. The distance between the centroids of the hexamethylbenzene and benzene rings (3.688 (4) Å) is noticeably longer than that found in (I).

Experimental

LaCl₃ (100 mg, 0.41 mmol), AlCl₃ (163 mg, 1.22 mmol), hexamethylbenzene (66 mg, 0.41 mmol) and an excess of aluminium foil were placed into a Schlenk flask inside the glove box. Benzene (10 ml) was added to the flask and the mixture was refluxed for two hours. The LaCl₃, AlCl₃, and hexamethylbenzene dissolved completely to give a yellow solution. The solution was filtered while hot through a pad of Celite and then kept at 12°C under argon for 2 days to afford a yellow crystalline material. Yield: 240 mg (65%). IR data (cm⁻¹): 3091 (w), 3071 (w), 3036 (w), 1598 (*m*), 1531 (w), 1478 (*m*), 1423 (*s*), 1382 (*m*), 1332 (*m*), 1272 (*m*), 1180 (w), 1076 (w), 983 (w), 824 (w), 677 (*s*).

Refinement

All C—H atoms were refined using the riding model approximation, with C—H = 0.95-0.98Å [U_{iso} (H) = 1.2 or 1.5Ueq(C)]. All other atoms were refined anisotropically. Large anisotropy of the carbon atoms of hexamethylbenzene suggests the

presence of disorder. It was modeled over two rotational orientations in a 1:1 ratio. The C5 and C8 carbon atoms lie on a mirror plane and are constrained to have identical anisotropic displacement parameters (EADP command in the *SHELXL* realm).

Figures

Fig. 1. A view of the molecular structure of (I), along with the atom numbering scheme [symmetry code: (i) x, -y + 1/2, z]. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms and disordered parts are omitted for clarity.

Fig. 2. A view of the molecular structure of (I) showing π - π stacking interactions between coordinated C₆Me₆ and benzene rings.

Hexa- μ -chlorido-hexachlorido(η^6 - hexamethylbenzene)trialuminium(III)lanthanum(III) benzene solvate

Crystal data	
$[Al_{3}LaCl_{12}(C_{12}H_{18})] \cdot C_{6}H_{6}$	$F_{000} = 1728$
$M_r = 885.62$	$D_{\rm x} = 1.728 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pnma	Mo- $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2n	Cell parameters from 7019 reflections
a = 12.2127 (6) Å	$\theta = 2.5 - 28.2^{\circ}$
<i>b</i> = 16.4205 (8) Å	$\mu = 2.28 \text{ mm}^{-1}$
c = 16.9790 (8) Å	T = 173 K
$V = 3404.9 (3) \text{ Å}^3$	Block, yellow
<i>Z</i> = 4	$0.22\times0.20\times0.16~mm$
Data collection	
Bruker SMART APEX CCD area-detector	1250 independent reflections

diffractometer	4250 independent reflections
Radiation source: fine-focus sealed tube	3911 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.018$
T = 173 K	$\theta_{\text{max}} = 28.3^{\circ}$
$0.30^{\circ} \omega$ scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2003)	$h = -15 \rightarrow 16$

$T_{\min} = 0.613, \ T_{\max} = 0.697$	$k = -21 \rightarrow 21$
28535 measured reflections	$l = -22 \rightarrow 22$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.025$	H-atom parameters not refined
$wR(F^2) = 0.063$	$w = 1/[\sigma^2(F_0^2) + (0.0304P)^2 + 3.1621P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{max} < 0.001$
4250 reflections	$\Delta \rho_{max} = 0.89 \text{ e } \text{\AA}^{-3}$
189 parameters	$\Delta \rho_{min} = -0.98 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Lal	0.106393 (12)	0.2500	0.425620 (9)	0.02758 (6)	
Al1	0.09537 (6)	0.04272 (4)	0.32343 (5)	0.04146 (16)	
A12	-0.20200 (8)	0.2500	0.41914 (6)	0.0403 (2)	
Cl1	-0.02765 (6)	0.03298 (4)	0.23836 (5)	0.06224 (19)	
C12	0.18966 (7)	-0.06204 (4)	0.34109 (6)	0.0684 (2)	
C13	0.19872 (5)	0.14875 (3)	0.30139 (3)	0.04206 (13)	
Cl4	0.02586 (5)	0.08226 (4)	0.43571 (3)	0.04489 (14)	
C15	-0.09121 (6)	0.2500	0.52121 (4)	0.04250 (18)	
C16	-0.08346 (6)	0.2500	0.32208 (4)	0.03682 (16)	
C17	-0.29273 (6)	0.14181 (5)	0.41927 (4)	0.05841 (18)	
C1	0.3384 (3)	0.2500	0.4729 (2)	0.0515 (10)	
C2	0.3003 (3)	0.17691 (17)	0.50333 (19)	0.0609 (8)	
C3	0.2212 (3)	0.1777 (3)	0.5621 (2)	0.0823 (13)	
C4	0.1820 (3)	0.2500	0.5901 (2)	0.096 (3)	
C5	0.4271 (4)	0.2500	0.4107 (3)	0.194 (5)	
H5A	0.4789	0.2943	0.4214	0.291*	0.50

H5B	0.3940	0.2580	0.3587	0.291*	0.50
H5C	0.4659	0.1978	0.4118	0.291*	0.50
C6	0.3258 (8)	0.0879 (6)	0.4928 (7)	0.087 (3)	0.50
H6A	0.3781	0.0706	0.5332	0.130*	0.50
H6B	0.3577	0.0791	0.4405	0.130*	0.50
H6C	0.2583	0.0561	0.4977	0.130*	0.50
C7	0.1582 (8)	0.1206 (6)	0.6166 (5)	0.093 (3)	0.50
H7A	0.1812	0.1299	0.6711	0.139*	0.50
H7B	0.1735	0.0640	0.6019	0.139*	0.50
H7C	0.0796	0.1312	0.6117	0.139*	0.50
C6X	0.3773 (8)	0.1077 (7)	0.4617 (6)	0.084 (4)	0.50
H6X1	0.4398	0.0956	0.4959	0.126*	0.50
H6X2	0.4039	0.1281	0.4109	0.126*	0.50
H6X3	0.3344	0.0581	0.4533	0.126*	0.50
C7X	0.2146 (9)	0.0787 (5)	0.5824 (6)	0.092 (3)	0.50
H7X1	0.1425	0.0659	0.6045	0.137*	0.50
H7X2	0.2716	0.0646	0.6206	0.137*	0.50
H7X3	0.2257	0.0473	0.5339	0.137*	0.50
C8	0.1026 (4)	0.2500	0.6586 (3)	0.194 (5)	
H8A	0.0691	0.1960	0.6636	0.291*	0.50
H8B	0.0454	0.2907	0.6494	0.291*	0.50
H8C	0.1420	0.2633	0.7072	0.291*	0.50
C9	0.5948 (4)	0.2500	0.6119 (3)	0.088 (2)	
Н9	0.6600	0.2500	0.5814	0.106*	
C10	0.5464 (3)	0.1771 (2)	0.6345 (2)	0.0750 (10)	
H10	0.5779	0.1265	0.6193	0.090*	
C11	0.4547 (3)	0.1790 (2)	0.6780 (2)	0.0679 (9)	
H11	0.4212	0.1293	0.6936	0.082*	
C12	0.4094 (3)	0.2500	0.7000 (3)	0.0646 (12)	
H12	0.3449	0.2500	0.7312	0.077*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
La1	0.02175 (8)	0.03570 (10)	0.02528 (9)	0.000	0.00028 (5)	0.000
A11	0.0428 (4)	0.0342 (3)	0.0475 (4)	-0.0003 (3)	-0.0093 (3)	-0.0026 (3)
A12	0.0247 (4)	0.0577 (6)	0.0384 (5)	0.000	0.0008 (4)	0.000
Cl1	0.0664 (4)	0.0525 (4)	0.0678 (4)	0.0015 (3)	-0.0311 (3)	-0.0082 (3)
Cl2	0.0666 (4)	0.0438 (3)	0.0947 (6)	0.0136 (3)	-0.0232 (4)	-0.0036 (4)
C13	0.0434 (3)	0.0424 (3)	0.0404 (3)	-0.0030 (2)	0.0099 (2)	-0.0068 (2)
Cl4	0.0460 (3)	0.0431 (3)	0.0456 (3)	-0.0101 (2)	0.0013 (2)	0.0080 (2)
Cl5	0.0288 (3)	0.0687 (5)	0.0300 (3)	0.000	0.0031 (3)	0.000
Cl6	0.0277 (3)	0.0530 (4)	0.0298 (3)	0.000	-0.0025 (3)	0.000
Cl7	0.0418 (3)	0.0720 (5)	0.0615 (4)	-0.0171 (3)	0.0028 (3)	-0.0021 (3)
C1	0.0227 (14)	0.099 (3)	0.0325 (16)	0.000	-0.0035 (12)	0.000
C2	0.0654 (17)	0.0486 (14)	0.0688 (18)	0.0173 (13)	-0.0438 (16)	-0.0151 (13)
C3	0.071 (2)	0.114 (3)	0.0617 (19)	-0.055 (2)	-0.0416 (18)	0.055 (2)
C4	0.0269 (19)	0.237 (9)	0.0259 (18)	0.000	-0.0009 (14)	0.000

C5 C6	0.0328 (17) 0.082 (7)	0.507 (15) 0.060 (5)	0.0414 (19) 0.118 (9)	0.000 0.034 (5)	0.0080 (14) -0.054 (6)	0.000 -0.025 (5)
C7	0.099 (7)	0.110 (7)	0.070 (5)	-0.061 (6)	-0.042 (5)	0.058 (5)
C6X	0.075 (6)	0.089 (8)	0.087 (7)	0.044 (6)	-0.037 (5)	-0.040 (6)
C7X	0.111 (8)	0.067 (5)	0.097 (7)	-0.032 (5)	-0.053 (6)	0.048 (5)
C8	0.0328 (17)	0.507 (15)	0.0414 (19)	0.000	0.0080 (14)	0.000
C9	0.052 (3)	0.172 (7)	0.041 (2)	0.000	0.0042 (19)	0.000
C10	0.081 (2)	0.080 (2)	0.0634 (19)	0.029 (2)	-0.0217 (18)	-0.0169 (17)
C11	0.070 (2)	0.069 (2)	0.0653 (19)	-0.0142 (17)	-0.0277 (16)	0.0189 (16)
C12	0.039 (2)	0.105 (4)	0.049 (2)	0.000	-0.0136 (17)	0.000
Geometric paran	neters (Å, °)					
La1—C1		2.945 (3)	C3—C7	X	1.663	(8)
La1—C2		2.965 (2)	C4—C3	i	1.366	(5)
La1—C3		2.957 (3)	C4—C8		1.514	(6)
La1—C4		2.941 (4)	С5—Н5	Ā	0.980)
La1—Cl3		2.9128 (5)	С5—Н5	B	0.980)
La1—Cl4		2.9298 (6)	С5—Н5	ïC	0.980)
La1—Cl5		2.9083 (7)	С8—Н8	A	0.980	0
La1—Cl6		2.9097 (7)	С8—Н8	B	0.980	0
La1—Cg1		2.613 (3)	С8—Н8	SC	0.980)
Cg1—Cg2		3.612 (4)	С6—Н6	Ā	0.980)
La1—Cl3 ⁱ		2.9128 (5)	С6—Н6	B	0.980)
La1—Cl4 ⁱ		2.9298 (6)	С6—Н6	iC	0.980)
La1—C3 ⁱ		2.957 (3)	С7—Н7	'A	0.980)
La1—C2 ⁱ		2.965 (2)	С7—Н7	B	0.980)
Al1—Cl1		2.0902 (10)	С7—Н7	'C	0.980	0
Al1—Cl2		2.0918 (10)	C6X—H	46X1	0.980)
Al1—Cl3		2.1828 (9)	C6X—H	16X2	0.980)
Al1—Cl4		2.1855 (10)	C6X—H	16X3	0.980)
Al2—Cl7		2.0937 (9)	C7X—H	47X1	0.980)
Al2—Cl7 ⁱ		2.0937 (9)	C7X—H	17X2	0.980)
Al2—Cl6		2.1936 (12)	C7X—H	H7X3	0.980)
Al2—Cl5		2.1987 (12)	C9—C1	0	1.389	(5)
$C1-C2^{1}$		1.387 (4)	C9—C1	0^1	1.389	(5)
C1—C2		1.387 (4)	С9—Н9)	0.950)
C1—C5		1.513 (6)	C10—C	11	1.343	(5)
C2—C3		1.389 (5)	С10—Н	10	0.950	0
C2—C6		1.505 (10)	C11—C	12	1.344	(4)
C2—C6X		1.635 (10)	С11—Н		0.950)
C3—C4		1.366 (5)	С12—С	11 ¹	1.344	(4)
C3—C7		1.525 (7)	С12—Н	112	0.950)
Cl5—La1—Cl6		71.09 (2)	Cl7—A	12—C15	108.9	6 (4)
Cl5—La1—Cl3		136.497 (15)	Cl7 ⁱ —A	.12—C15	108.9	5 (4)
Cl6—La1—Cl3		82.586 (17)	Cl6—A	l2—Cl5	100.7	2 (5)
Cl5—La1—Cl3 ⁱ		136.497 (14)	Al1—C	13—La1	96.16	(3)

Cl6—La1—Cl3 ⁱ	82.586 (17)	Al1—Cl4—La1	95.61 (3)
Cl3—La1—Cl3 ⁱ	69.61 (2)	Al2—Cl5—La1	94.06 (4)
Cl5—La1—Cl4	71.868 (13)	Al2—Cl6—La1	94.13 (4)
Cl6—La1—Cl4	76.576 (13)	$C2^{i}$ —C1—C2	119.9 (4)
Cl3—La1—Cl4	68.636 (17)	C2 ⁱ —C1—C5	119.99 (18)
Cl3 ⁱ —La1—Cl4	135.147 (17)	C2—C1—C5	119.99 (18)
Cl5—La1—Cl4 ⁱ	71.868 (13)	C2 ⁱ —C1—La1	77.23 (17)
Cl6—La1—Cl4 ⁱ	76.576 (13)	C2C1La1	77.23 (17)
Cl3—La1—Cl4 ⁱ	135.147 (17)	C5-C1-La1	119.9 (3)
Cl3 ⁱ —La1—Cl4 ⁱ	68.636 (17)	C1—C2—C3	119.5 (3)
Cl4—La1—Cl4 ⁱ	140.15 (3)	C1—C2—C6	136.6 (6)
Cl5—La1—C4	74.37 (8)	C3—C2—C6	103.8 (6)
Cl6—La1—C4	145.46 (8)	C1—C2—La1	75.63 (16)
Cl3—La1—C4	124.47 (6)	C3—C2—La1	76.11 (16)
Cl3 ⁱ —La1—C4	124.47 (6)	C6—C2—La1	120.4 (4)
Cl4—La1—C4	92.86 (3)	C6X—C2—La1	123.2 (4)
Cl4 ⁱ —La1—C4	92.86 (3)	C4—C3—C2	120.1 (3)
Cl5—La1—C1	130.25 (7)	C4—C3—C7	98.4 (6)
Cl6—La1—C1	158.66 (7)	C2—C3—C7	141.3 (6)
Cl3—La1—C1	79.93 (6)	C4—C3—La1	76.0 (2)
Cl3 ⁱ —La1—C1	79.93 (6)	C2—C3—La1	76.76 (15)
Cl4—La1—C1	107.879 (16)	C7—C3—La1	118.9 (3)
Cl4 ⁱ —La1—C1	107.879 (17)	C3 ⁱ —C4—C3	120.8 (4)
C4—La1—C1	55.88 (10)	C3 ⁱ —C4—C8	119.5 (2)
Cl5—La1—C3 ⁱ	87.49 (8)	C3—C4—C8	119.5 (2)
Cl6—La1—C3 ⁱ	148.34 (6)	C3 ⁱ —C4—La1	77.2 (2)
Cl3—La1—C3 ⁱ	127.81 (6)	C3—C4—La1	77.2 (2)
Cl3 ⁱ —La1—C3 ⁱ	98.90 (10)	C8—C4—La1	121.9 (3)
Cl4—La1—C3 ⁱ	119.39 (10)	C1—C5—H5A	109.5
Cl4 ⁱ —La1—C3 ⁱ	74.68 (7)	C1—C5—H5B	109.5
C4—La1—C3 ⁱ	26.77 (10)	H5A—C5—H5B	109.5
C1—La1—C3 ⁱ	47.94 (8)	С1—С5—Н5С	109.5
Cl5—La1—C3	87.49 (8)	H5A—C5—H5C	109.5
Cl6—La1—C3	148.34 (6)	H5B—C5—H5C	109.5
Cl3—La1—C3	98.90 (10)	С4—С8—Н8А	109.5
Cl3 ⁱ —La1—C3	127.81 (6)	С4—С8—Н8В	109.5
Cl4—La1—C3	74.68 (7)	H8A—C8—H8B	109.5
Cl4 ⁱ —La1—C3	119.39 (10)	C4—C8—H8C	109.5
C4—La1—C3	26.77 (10)	Н8А—С8—Н8С	109.5
C1—La1—C3	47.94 (8)	H8B—C8—H8C	109.5
C3 ⁱ —La1—C3	47.35 (17)	С2—С6—Н6А	109.5
Cl5—La1—C2 ⁱ	114.49 (8)	С2—С6—Н6В	109.5
Cl6—La1—C2 ⁱ	154.88 (5)	С2—С6—Н6С	109.5

Cl3—La1—C2 ⁱ	104.12 (8)	С3—С7—Н7А	109.5
Cl3 ⁱ —La1—C2 ⁱ	77.41 (6)	С3—С7—Н7В	109.5
Cl4—La1—C2 ⁱ	128.51 (5)	С3—С7—Н7С	109.5
Cl4 ⁱ —La1—C2 ⁱ	82.04 (6)	C2—C6X—H6X1	109.5
C4—La1—C2 ⁱ	47.68 (9)	С2—С6Х—Н6Х2	109.5
C1—La1—C2 ⁱ	27.14 (7)	H6X1—C6X—H6X2	109.5
C3 ⁱ —La1—C2 ⁱ	27.13 (10)	С2—С6Х—Н6Х3	109.5
C3—La1—C2 ⁱ	55.61 (8)	Н6Х1—С6Х—Н6Х3	109.5
Cl5—La1—C2	114.49 (8)	H6X2—C6X—H6X3	109.5
Cl6—La1—C2	154.88 (5)	C3—C7X—H7X1	109.5
Cl3—La1—C2	77.41 (6)	C3—C7X—H7X2	109.5
Cl3 ⁱ —La1—C2	104.12 (8)	H7X1—C7X—H7X2	109.5
Cl4—La1—C2	82.04 (6)	С3—С7Х—Н7Х3	109.5
Cl4 ⁱ —La1—C2	128.51 (5)	H7X1—C7X—H7X3	109.5
C4—La1—C2	47.68 (9)	H7X2—C7X—H7X3	109.5
C1—La1—C2	27.14 (7)	C10—C9—C10 ⁱ	119.1 (5)
C3 ⁱ —La1—C2	55.61 (8)	С10—С9—Н9	120.5
C3—La1—C2	27.13 (10)	С10 ^і —С9—Н9	120.5
C2 ⁱ —La1—C2	47.76 (11)	C11—C10—C9	119.2 (4)
Cl1—Al1—Cl2	115.58 (4)	C11—C10—H10	120.4
Cl1—Al1—Cl3	110.99 (4)	С9—С10—Н10	120.4
Cl2—Al1—Cl3	111.24 (4)	C10-C11-C12	121.1 (4)
Cl1—Al1—Cl4	110.26 (4)	C10-C11-H11	119.5
Cl2—Al1—Cl4	109.45 (5)	C12—C11—H11	119.5
Cl3—Al1—Cl4	97.89 (3)	C11 ⁱ —C12—C11	120.5 (5)
C17—A12—C17 ⁱ	116.10 (6)	C11 ⁱ —C12—H12	119.8
Cl7—Al2—Cl6	110.49 (4)	C11—C12—H12	119.8
Cl7 ⁱ —Al2—Cl6	110.49 (4)		

Symmetry codes: (i) x, -y+1/2, z.

